CD40 mediates retinal inflammation and neurovascular degeneration.
نویسندگان
چکیده
Retinopathies are major causes of visual impairment. We used a model of ischemic retinopathy to examine the role of CD40 in the pathogenesis of retinal injury. Retinal inflammation, loss of ganglion cells, and capillary degeneration were markedly attenuated in ischemic retinas of CD40(-/-) mice. Up-regulation of NOS2 and COX2 after retinal ischemia were blunted in CD40(-/-) mice. NOS2-COX-2 up-regulation in ischemic retinas from wild-type mice was at least in part explained by recruitment of NOS2(+)COX-2(+) leukocytes. Up-regulation of KC/CXCL1 and ICAM-1 also required CD40. Retinal endothelial and Muller cells expressed CD40. Stimulation of these cells through CD40 caused ICAM-1 up-regulation and KC/CXCL1 production. Bone marrow transplant experiments revealed that leukocyte infiltration, ganglion cell loss, and up-regulation of proinflammatory molecules after retinal ischemia were dependent on CD40 expression in the retina and not peripheral blood leukocytes. These studies identified CD40 as a regulator of retinal inflammation and neurovascular degeneration. They support a model in which CD40 stimulation of endothelial and Muller cells triggers adhesion molecule up-regulation and chemokine production, promoting the recruitment of leukocytes that express NOS2/COX-2, molecules linked to neurovascular degeneration.
منابع مشابه
Intravitreal AAV2.COMP-Ang1 Prevents Neurovascular Degeneration in a Murine Model of Diabetic Retinopathy
Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in the U.S. The vision-threatening processes of neuroglial and vascular dysfunction in DR occur in concert, driven by hyperglycemia and propelled by a pathway of inflammation, ischemia, vasodegeneration, and breakdown of the blood retinal barrier. Currently, no therapies exist for normalizing the vasculatu...
متن کاملLong non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain
Although nervous and vascular systems are functionally different, they usually share similar mechanisms for function maintenance. Neurovascular dysfunction has became the pathogenesis of several vascular and nervous disorders. Here we show that long non-coding RNA-MIAT is aberrantly expressed under neurovascular dysfunction condition. MIAT is shown as a regulator of vascular dysfunction, includ...
متن کاملCell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کاملMüller Cell–Microglia Cross Talk Drives Neuroinflammation in Diabetic Retinopathy
Diabetic retinopathy (DR) is the most common complication of diabetes and a leading cause of vision loss worldwide (1). Unfortunately, there are no treatments targeting early stages of the disease prior to the onset of sight-threatening vascular defects such as macular edema or neovascularization. A better understanding of the etiology of DR is needed to identify therapeutic targets to halt ear...
متن کاملMUTYH promotes oxidative microglial activation and inherited retinal degeneration.
Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog-mediated (MUYTH-med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 181 12 شماره
صفحات -
تاریخ انتشار 2008